
Using Apple’s Xcode C++ Compiler, page 1 of 4

U s i n g T h e A p p l e C++ C o m p i l e r
Editing And Compiling In Apple Xcode, July 2013 Edition

This summarizes the steps in creating a console program using Apple’s Xcode in OS X (Snow Leopard), and
applies to most other Mac OSs, starting with OS 9.

q 1. Check for XCode Installation:
Xcode is not automatically included in the Apple Mac OS. To see if it is already installed, go to the Terminal
application and enter the “compile” command, and see if it works or not. Here’s how to start the Terminal app
from Finder – go to Applications, Utilities, and choose Terminal.app:

 Then in Terminal, type the “compile” command, g++, like this, and press ENTER:

If the reply is “command not found”, then it is not installed. In this case, proceed to step 2. Otherwise, if the
reply is “no input files”, then it is installed and you can proceed directly to step 3.

Using Apple’s Xcode C++ Compiler, page 2 of 4

q 2. Download and Install XCode:
The Apple App Store has XCode for free. But you need the Lion OS or better. You can find it in the store, or
use a browser to go to http://developer.apple.com/xcode, and click the “View in Mac App Store” button,
located to the right of the “Download Xcode 4 for free” section:

This takes you to the App Store, where you can click the “Free” button. Sign in with
your iTunes account, and start the download. It will show this:

…until the download and installation are completed. You may receive an email from
Apple while this is going on – you can ignore and delete it. It looks like this:

When the installation step complete, you should see this beside XCode in the App Store:

Once installed, you will have to run XCode just once, to get the "command line tools". Go to XCode's
"Preferences", and in the "Downloads" pane, use the "install" button for the "Command Line Tools".

Repeat step 1 of this document. It should direct you to step 3 below.

Using Apple’s Xcode C++ Compiler, page 3 of 4

q 3. Create Files:
You may any text editor with which you are familiar, such as vi or Xcode. If you do not have a preferred editor,
you can download the JNotePad app from the Robert Burns’ Class Website (http://cs.dvc.edu) using then “as
Mac app” link under the heading “Free Resources”:

Save it to your Applications folder or top your desktop, as you prefer – double-click it to start the app.

Type the Code for the Program
Type your program in the editor’s window (Start with File->New in JNotepad). For example, type the
following, with no indenting on the first line of coding. Use 2-space indenting on the first indented line.
(JNotePad automatically inserts 2 spaces when the TAB key is pressed.) Skip single lines where indicated.
There are three different sets of enclosing symbols used -- the less-than and greater-than symbols around
iostream, the parentheses after main, and the curly braces where indicated. Be sure to use upper-case and
lower-case lettering where shown. Note that “return 0;” is not required in any C++ main function.

#include <iostream>
using namespace std;

int main()
{
 cout << "Hello, World" << endl; (that’s end-el, not end-one)
}

Save your work to your user folder (the one with the house icon in Finder) with either the File->Save or
File->Save As menu command, and be sure to include a CPP extension (e.g., HelloWorld.cpp).

q 3. Compile and Run Using the Terminal App:
In Terminal, use a command like the following (the flag is "dash-oh", not "dash-zero") to create an executable:

g++ HelloWorld.cpp –o HelloWorld

To run the program, enter the name of the executable on the command line. Preceded by dot-slash, e.g.:

./HelloWorld

Sample Session:
Last login: Sat Aug 13 08:53:55 on ttyp2
Welcome to Darwin!
Robert-Burns-Computer:~ Robert$ g++ HelloWorld.cpp -o HelloWorld
Robert-Burns-Computer:~ Robert$ ls -l
total 2
 -rwxr-xr-x 1 Robert Robert 17472 Aug 13 09:00 HelloWorld
 -rw-r--r-- 1 Robert Robert 123 Aug 13 08:57 HelloWorld.cpp
Robert-Burns-Computer:~ Robert$./HelloWorld
Hello, world
Robert-Burns-Computer:~ Robert$ exit

this is the compile command

command to list files in folder…

the command to run the program is its
executable’s name, preceded by dot-slash

…these are
the files

the output
command to end the

Terminal session

this is how to specify the
name of the executable

Using Apple’s Xcode C++ Compiler, page 4 of 4

Using the Command Line Buffer — Minimize Typing and Typos
So that you do not have to retype the compile and run commands, use the up and down arrow keys to navigate
through previously-typed commands.

The usual sequence is to type the compile and build command, followed by the run command. After that, up-up
returns to the compile and build command, and up-up goes from there to the run command.

Folder Options
If you prefer to use a separate folder for your CPP files, create a folder in your user folder with any name you
prefer. Then save your files there. To compile and run, you’ll need to enter the “change directory” command in
Terminal, something like this, before starting your compile-and-run sessions:

In the above example, the target folder is named “grading”, and all CPP and data files are stored in that folder.
Note that the Terminal prompt includes the folder name.

q 4. Compile and Run – Advanced Instructions for Multi-CPP File Projects:
Advanced programming can involve multiple CPP and H files. The full set of files for a single program
consisting of multiple CPP and H files is called a “project”. To use command line compiling with projects,
refer to the following sample:

Advanced Instructions — Beyond the Introduction to Programming
To compile and build projects consisting of more than one CPP, list the CPPs separated by spaces, like this:

g++ main.cpp Time.cpp –o main

The executable name is the last name in the command – main in the above example.

To compile a CPP without building, include the -c flag -- this produces an object file, “Time.o”:

g++ -c Time.cpp

To build an executable from already-compiled object files, list the object files instead of the CPPs:

g++ main.o Time.o –o main

When working with multiple CPP files in a single project, it is recommended to compile each CPP separately,
using the -c flag during development. This makes debugging easier. Once the program is working, and you are
making small code adjustments, then you should go back to compiling and building all in one command.

Note that no reference is ever made to H files in compile commands – they are attached via #include “…”
statements in the CPPs, and get compiled that way.

this executable’s
name is “main”

